Analysis of two modeling approaches for fatigue estimation and remaining useful life predictions of wind turbine blades
نویسندگان
چکیده
Wind turbines components are subject to considerable stresses and fatigue due to extreme environmental conditions to which they are exposed, especially those located offshore. With this aim, the present work explores two different approaches on fatigue damage estimation and remaining useful life predictions of wind turbine blades. The first approach uses the rainflow counting algorithm. The second approach comes from a fatigue damage model that describes the propagation of damage at a microscopic scale due to matrix cracks which manifests in a macroscopic scale as stiffness loss. Both techniques have been tested using the information provided by the blade root moment sensor signal obtained from the well known wind turbine simulator FAST (Fatigue, Aerodynamics, Structures and Turbulence).
منابع مشابه
High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines
Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine roto...
متن کاملReliability-Based Design Optimization of Wind Turbine Blades for Fatigue Life under Wind Load Uncertainty
1. Abstract Conventional wind turbine blades have been designed using fatigue life predictions based on a fixed wind load distribution that does not fully capture uncertainty of the wind load. This could result in early fatigue failure of blades and eventually increase the maintenance cost of wind turbines. To produce reliable as well as economical wind turbine blades, this paper studies reliab...
متن کاملA General Method for Fatigue Analysis of Vertical Axis Wind Turbine Blades*
The fatigue life of wind turbine blades that are exposed to the random loading environment of atmospheric winds is described with random data analysis procedures. The incident wind speed and the stresses caused by these winds are expressed in terms of probability density functions, while the fatigue life vs stress level relationship is treated deterministically. This approach uses a "damage den...
متن کاملDesign and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine
Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...
متن کاملExperimental Investigation and Analysis of Manufacturing Wind Turbine Blades Produced by Hydroforming of Aluminum Alloy AA5754
Development of new technologies and combined with creativity and innovation, plays the fundamental role in developing of any community′s value. Thus, in this research the design and production of hydroforming device was introduced. One of the best and most efficient technologies in the world of metal forming is wind turbine blade producing with hydroforming method which seems as an innovative m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016